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A significant step in the design of Heating, Ventilating, Air Conditioning, and Refrigeration

(HVAC-R) systems is to calculate the room thermal loads which often vary dynamically. A

self-adjusting method is proposed for real-time calculation of heating/cooling loads in

HVAC-R applications. In this method, the heat balance calculations are improved by real-

time temperature data to achieve more accurate load estimations. An iterative mathe-

matical algorithm is developed to adjust the heat transfer coefficients according to live

measurements.

Accepted analytical correlations are also used to estimate the heat transfer coefficients

for comparison with the present model. The adjusted coefficients and the analytical cor-

relations are separately used to estimate the thermal loads in an experimental setup. It is

shown that the utilization of the adjusted coefficients yields to higher accuracy of thermal

load estimations compared to the conventional analytical correlations. Since the proposed

method requires less engineering information of the room, it can be adopted as a simplified

yet accurate method for the design and retrofit of new and existing HVAC-R systems.

© 2015 Elsevier Ltd and IIR. All rights reserved.
Calcul de charge thermique en temps r�eel par une estimation
automatique des coefficients de convection
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1. Introduction

Heating, Ventilating, Air Conditioning, and Refrigeration

(HVAC-R) consume a remarkable portion of the worldwide
8; fax: þ1 778 782 7514.
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energy. Half of the total energy usage in buildings as well as

20% of the total national energy usage in European and

American countries is consumed by HVAC-R systems (P�erez-

Lombard et al., 2008). HVAC-R energy can even exceed half

of the total energy usage of a building located in tropical
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Nomenclature

a Sigmoid function parameter

A½m2� Wall surface area

cp½J kg�1 K�1� Air specific heat

c1; c2½�C� Correlation coefficients

c3½s�1� Correlation coefficient

C Correlation coefficient

D Desired neuron output

f Sigmoid function

g½m s�2� Gravitational constant

h½W m�2 K�1� Convection coefficient

H½m� Wall height

k½W m�1 K�1� Air thermal conductivity

n Number of walls

O Calculated neuron output

P½m� Surface perimeter
_q½W� Heat transfer rate across one wall
_Q½W� Heat transfer rate

R2 Coefficient of determination

t½s� Time

T½�C� Temperature

w0½W� Bias weight factor

wj½W K�1� Input weight factors (j ¼ 1;…;n)

x; y; z½cm� Coordinates

Greek letters

b½K�1� Volumetric coefficient of thermal expansion

ε Convergence criterion threshold

h Learning rate

m½N s m�2� Air dynamic viscosity

r½kg m�3� Air density

Subscripts and superscripts

a Air

I Internal sources

j Wall number

m Training step number

V Ventilation and infiltration

w Wall surface

W Walls

i n t e r n a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 5 7 ( 2 0 1 5 ) 2 2 9e2 3 8230
climates (Chua et al., 2013). Refrigeration systems also

consume a substantial amount of energy. They may use 80%

of the total energy in supermarkets (Hovgaard et al., 2011).

Moreover, air conditioning is a significant energy-consuming

unit in vehicles (Farrington et al., 1999). The air conditioning

energy in vehicles outweighs the energy loss to aerodynamic

drag, rolling resistance, and driveline losses for a typical

vehicle. Air conditioning can reduce the fuel economy of mid-

size vehicles by more than 20%. It can also increase vehicle

NOx and CO emissions by approximately 80% and 70%,

respectively (Farrington and Rugh, 2000). Air conditioning

systems of light-duty vehicles consume 7 billion gallons of

fuel per year in the United States (Johnson, 2002). Improved

design and performance of HVAC-R systems can lead to

considerable reductions in the associated energy consump-

tion and gas emissions worldwide.

Thermal load calculation is the primary step in HVAC-R

design. It often involves the study of the room characteris-

tics such as wall properties, fenestration, openings, and air

distribution. Occupancy level, geographical location, and

ambient weather conditions are other necessary data that

need to be investigated for thermal load calculations.

Considerable engineering effort and time are required for

collecting these data. Such detailed information is prone to

inaccuracy and may even be unavailable. Therefore, it is

promising to develop innovative methods for estimating the

thermal loads accurately and with minimum data

requirement.

The heat balance method is an effective thermal load

calculation technique recognized by the American Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASH-

RAE). The heat balance method is based on the fundamentals

of heat transfer and energy balance (ASHRAE, 2009). It is a

well-recognized method widely used for calculations in both

residential and non-residential applications (Pedersen et al.,

1997; Fayazbakhsh and Bahrami, 2013). According to this
method, the temperature variation inside a room is the result

of the heat transfer through various mechanisms including

radiation, convection, and conduction. Among these mecha-

nisms, convection heat transfer has a sophisticated nature

and its calculation tends to be complicated and inaccurate.

The convection heat transfer over a wall depends on the

velocity and temperature of the air as well as the surface

temperature. A common practice for the calculation of the

convection heat transfer is to evaluate the coefficients using

analytical correlations. ASHRAE Standard 90.1 (ASHRAE, 2013)

offers comprehensive tables for the estimation of U-Factors.

The U-Factor, or thermal transmittance, is defined as the

“heat transmission in unit time through unit area of amaterial

or construction and the boundary air films, induced by unit

temperature difference between the environments on each

side” (ASHRAE, 2013). However, finding the proper U-Factor

requires extensive information to be gathered by the designer.

Moreover, the estimated U-Factor may be inaccurate for

varying air patterns and thermal conditions.

Besides ASHRAE, other attempts are made to provide reli-

able estimations of the convection coefficient. A broad range

of experimental, computational, and analytical methods is

utilized in the literature for estimation of the coefficients.

Loveday and Taki (1996) used an experimental arrangement to

find correlations for the external convection coefficient as a

function of wind speed for a building wall. Kurazumi et al.

(2014) experimentally found the convection heat transfer co-

efficients of human seated body during forced convection by

downward flow from the ceiling using a thermal mannequin.

Lei et al. (2014) presented an inverse modeling strategy to

determine the required wall boundary convection heat fluxes

required in computational simulations. In several studies by

Zhai et al. (2001), Zhai and Chen (2003b), Zhai and (Yan) Chen

(2004), Zhai and Chen (2005), Khalifa (2001a,b), Zhai et al.

(2002), Zhai and Chen (2003a), they developed a methodology

to couple Computational Fluid Dynamics (CFD) simulations
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Fig. 1 e Schematic of the heat balance method (ASHRAE,

2009).

i n t e rn a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 5 7 ( 2 0 1 5 ) 2 2 9e2 3 8 231
with Energy Simulations (ES) to improve the accuracy of the

latter for different air distribution patterns. They concluded

that an ES module coupled with a CFD simulation can benefit

from more accurate convection coefficients, hence improving

the overall load calculation process (Zhai and Chen, 2003b).

However, Zhai and Chen (2005) reported that one CFD calcu-

lation may take about 10 h to obtain a reasonable result even

with the steady-state condition. Thus, the high time con-

sumption associated to CFD tools is a drawback that hinders

their usage in many typical applications.

The amount of studies devoted to the convection coeffi-

cient is a notion of its importance. Many reviews have

attempted to outline the numerous formulas of convection

coefficient. Khalifa (2001a,b) thoroughly reviewed available

correlations for natural convection coefficient over flat sur-

faces. Sartori (2006) reviewed the equations of forced con-

vection coefficient for flow over flat surfaces. Palyvos (2008)

presented a survey of the correlations for wind convection

coefficient to be used for energy modeling in building enve-

lopes. Defraeye et al. (2011) also collected the existing corre-

lations of convection coefficient over exterior building

surfaces and compared them with CFD simulations. From the

above reviews, it is evident that the convection coefficient can

deeply affect heat balance calculations and an ultimate form

that covers all conditions and scenarios is not available.

Different values of convection coefficient, even varying by an

order ofmagnitude, can be found in the literature for the same

problem. Therefore, an intelligent approach for real-time

estimation of the convection coefficient can improve the

heat balance calculations significantly.

Conventional methods aim to estimate the convection

coefficients according to available correlations and simula-

tions. In such methods, the coefficients are calculated using

geometrical and thermal data required in the correlations.

However, with the availability of on-site sensors and compu-

tational resources, new methodologies focus on the incorpo-

ration of real-time data in the calculation process. These are

‘data-driven’ methods compared to the more conventional

‘law-driven’ approaches such as the heat balance method.

Data-driven algorithms are proven to be capable of math-

ematically evaluating thermal loads through measurement

and learning rather than mere heat transfer analysis. Several

studies (Li et al., Jan. 2009; Kashiwagi and Tobi, 1993; Ben-

Nakhi and Mahmoud, 2004; Sousa et al., 1997; Yao et al.,

2004; Solmaz et al., 2014; Fayazbakhsh et al., 2015; Wang and

Xu, 2006; Wang and Xu, 2006; Liang and Du, 2005) show that

artificial intelligence algorithms such as neural networks,

genetic algorithm, and fuzzy logic can help estimate the

thermal loads in HVAC-R systems. Such models focus on

relating the thermal load to parameters such as the ambient

temperature by learning from real-timemeasurements rather

than explicitly using the heat transfer equations. However,

methods that are purely based on artificial intelligencemay be

inherently unaware of the heat transfer mechanisms. There-

fore, theymight be unreliable in new scenarios and conditions

for which they are not prepared. The mathematical

complexity of some artificial intelligence algorithms may also

necessitate large on-site computational resources.

In this study, the heat balance method is combined with a

data-driven approach to propose a new algorithm for thermal
loadcalculation.Real-timemeasurementsareused to inversely

calculate the convection coefficients, so that those values are

further used in the heat balance equation. Themodel is simple

and computationally inexpensive, since it only requires a few

algebraic calculations. It is validated using an experimental

setup and can aid the design process of new systems and the

retrofit of existing systems. HVAC-R controllers can use the

real-time load estimations of this method to improve the

overall performanceofheating/cooling systems.Themethod is

applicable to a wide range of applications including residential

buildings, office buildings, freezer rooms, and vehicle air con-

ditioning systems. In the following section, a description of the

model is provided, followed by validation and results.
2. Model development

The heat balance equation is considered here as the basis for

developing the proposed algorithm. Fig. 1 summarizes the

heat balancemethod as described in the ASHRAEHandbook of

Fundamentals (ASHRAE, 2009). As determined at the bottom

of Fig. 1, for a heating application at the steady-state condi-

tion, i.e., when the heat transfer rates are constant, the heat

balance equation is:

_QI ¼ _QV þ _QW (1)

where _QV is therateofventilationand infiltrationheat loss, _QW is

the rate of total heat loss across thewalls, and _QI is theheat gain

frominternal sources. Equation (1) isabalanceof thermalenergy

for the room envelope surrounded by internal wall surfaces.
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Thermal energy is transferred to the wall surfaces by the

convection and radiation mechanisms. The convection

mechanism depends on various factors such as wall orienta-

tion, air velocity, and air temperature. Finding the proper

convection coefficients requires correlations that may not

hold for all conditions experienced by the room, especially in

vehicle applications. Therefore, it is useful to find an estima-

tion of the convection coefficients without excessive experi-

ments or computation.

The other mechanism for transferring heat to the wall sur-

faces is radiation.Aportionof the incident radiation isabsorbed

by the surfaces and the rest is either reflected or transmitted

through. Radiation does not directly increase the air tempera-

ture; it transfers energy to the room surfaces, which is in turn

transferred to the air through convection and conduction. The

bulkof theradiationenergyreceivedateachsurfacecontributes

to the temperature increase on that surface. Therefore, by

directly measuring the surface temperature, the radiation heat

transfer is automatically considered in themodel.

The calculation of _QW consists of 3 steps: (1) outside face

heat balance, (2) conduction through the wall, and (3) inside

face heat balance. The total wall heat transfer rate _QW is the

summation of all individual wall heat transfer rates _qw:

_QW ¼
X
Walls

_qw (2)

where _qw is the heat transfer rate across each wall. The heat

transfer rate is a function of the temperature difference be-

tween the wall surface and the adjacent air. Therefore, the

inside face heat balance equation can be written as:

_qw ¼ hAðTa � TwÞ (3)

where h is the convection coefficient over the internal surface,

A is the wall surface area, Ta is the air temperature adjacent to

the wall, and Tw is the temperature on the wall interior sur-

face. In Eq. (3), it is assumed that the wall temperature and air

temperature are uniform. Combining Eqs. (2) and (3), the total

wall heat transfer rate is written as:

_QW ¼
Xn

j¼1

hjAjðTa � TwÞj (4)

where n is the number of walls.

The heat transfer rate _QV is the result of both the

ventilation and infiltration of air. Air may infiltrate into the

room through windows and openings and there is often no

means of direct measurement to find the volumetric rate of

infiltrated air. As such, the accurate rate of heat transfer

due to infiltration and ventilation is also unknown in

typical applications. Thus, we assume a constant value for

the unknown ventilation heat gain, and define it as one of

the parameters to be calculated by the algorithm. Replacing

w0 ¼ _QV and wj ¼ hjAj in Eqs. (1) and (4), we arrive at:

_QV þ _QW ¼ w0 þ
Xn

j¼1

wjðTa � TwÞj (5)

The right hand side of Eq. (5) is similar to the linear func-

tion of a neuron in neural networks, where w0 is called the

“bias weight” and w1 to wn are called the “input weights”

(Defraeye et al., 2011; Li et al., 2009; Kashiwagi and Tobi, 1993;
Ben-Nakhi and Mahmoud, 2004). Following the common

practice in neural networks, we apply a “transfer function” f to

the neuron output, defining:

O ¼ f

0
@w0 þ

Xn

j¼1

wjðTa � TwÞj

1
A (6)

where O is the neuron output and f is the sigmoid function

(Mehrotra et al., 1997) with the following general form:

fðaÞ ¼ 1
1þ expð�aÞ (7)

In Eq. (7), “a” is a generic parameter used to show the form of

the Sigmoid function used in this work.

Eq. (6) is a reformulation of Eq. (1) which is the basic heat

balance equation. The convection coefficients which are

included in the weight factors “w” in Eq. (6) are still unknown.

However, the temperatures Ta and Tw can be measured in

real-time. Therefore, an iterative process is proposed to guess

and correct the weight factors using the real-time tempera-

ture measurements. Since actual measurements are used to

update the weight factors, the iterative calculations are called

the “training” process.

The last part of the calculations is to update the weight

factors according to the current and desired neuron outputs.

The original convergence procedure for adjusting the weights

was developed by Rosenblatt (1962). Graupe (1997) proved that

the weights can be adjusted according to:

wmþ1
j ¼ wm

j þ hðD� OÞmðTa � TwÞmj (8)

where m denotes the step number. h is an arbitrary constant

called the “learning rate”, as it dictates the rate of correction

for the weight factors (Lippmann, 1988). Higher learning

rates result in faster adjustment of wj during the training

process. However, large h may also cause the weights to

diverge to infinity after a few steps. The value of h is often

selected by experience. It is assumed that h ¼ 0.05

throughout this study.

The training procedure is repeated until the convergence

criterion ismet. Convergence is achievedwhen all theweights

almost remain constant, i.e., their relative variation between

two consecutive training steps is less than a certain threshold

ε. In this study, a convergence threshold of ε ¼ 0.01 is used.

Once the weights have converged, the training process

stops and the weights can be used for the rest of the system's
operation, i.e., for other situations when the actual heat gain
_QI is unknown. Ta and Tw are measured on all walls and the

converged wj are plugged in Eq. (5) to calculate the total

thermal load _QV þ _Qw.

Fig. 2 is a flowchart summarizing the proposed algorithm

for thermal load calculation. At the first step, the weight fac-

tors should be initiated. If prior estimations are available for h

and A from measurements and correlations, the weight fac-

tors can be initiated fromwj ¼ hjAj. However, they can also be

initiated from wj ¼ 0, and the iterative process adjusts them

until convergence is achieved.

After the weights are initiated the training iterations

begin. At every training step, the air temperature (Ta), the

surface temperature (Tw), and the internal heat gain ( _QI) are

http://dx.doi.org/10.1016/j.ijrefrig.2015.05.017
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measured. In order to measure _QI, a known amount of

thermal energy can be intentionally introduced into the

room. An electrical heater with controllable power con-

sumption can be used to implement the condition. According

to Eq. (1), the total heat loss by ventilation, infiltration, and

walls is equal to the produced internal heat gain at the steady

state. The next step is to calculate the desired neuron output

D ¼ fð _QIÞ and the current neuron output O from Eq. (6). The

Sigmoid function defined in Eq. (7) is used for calculating the

parameters D and O.

The results of the proposed model greatly rely on the

temperature measurements. It is necessary to have at least

one thermocouple pair on each wall. The temperature, ge-

ometry, and convection coefficient are assumed uniform in

the model. These assumptions may be inaccurate for large

walls and complicated rooms. Additional thermocouple pairs

can obviously improve the model accuracy, especially in large

rooms. It is recommended to virtually divide the walls into

various sectors and attribute an independent temperature

value to each sector. Therefore, the accuracy of the resulting

convection coefficients can improve in the same way as finer

meshes would improve the computational simulations of the

room heat transfer. As the measuring technologies improve

and new facilities become available, the model can be

extended and verified in more complicated geometries and

larger rooms.

The model is validated for a heating scenario and the re-

sults are presented in the following section. Since the general

heat balance equation is used for developing the model, it can

be readily extended to cooling scenarios and different room

dimensions.
Fig. 2 e Flowchart of the algorithm for real-time thermal

load calculation by automatic estimation of convection

coefficients.
3. Results and discussion

A testbed is built to test and verify the proposed model. Fig. 3

shows the testbed built out of wood, plastic, and glass. It is

designed as a generic chamber in which heating and air con-

ditioning scenarios can be tested. Six pairs of T-type ther-

mocouples (5SRTC-TT-T-30-36, Omega Engineering Inc.,

Laval, QC, Canada) are attached on its walls. Out of every pair,

one thermocouple is attached to the interior wall surface and

the other is hung in the interior air adjacent to the same spot.

The air-side thermocouple is located at an approximate dis-

tance of 1 cm apart from the wall.

Heat convection heavily depends on both the surface ge-

ometry and the local flow characteristics. For instance, the

reading of a thermocouple pair located close to a wall edge is

not identical to one installed on a wide open wall center.

There is always conjugate (conduction and convection) heat

transfer taking place at surface edges and the effect is more

significant when non-conductive materials are involved.

Thus, attributing a single convection coefficient to an entire

wall is an approximate yet accepted approach. Although

temperature readings are performed at individual spots, the
 

Thermocouple 
locations 

Front 

Left 

Fig. 3 e The testbed used for model validation. Six

thermocouple pairs are attached to the walls by tape.
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Table 1 e Location of thermocouples with reference to the
coordinate system shown in Fig. 3.

Thermocouple Pair name x(cm) y(cm) z(cm)

Front 10 38 139

Rear 147 38 148

Left 80 0 85

Right 35 75 100

Top 55 55 131

Bottom 55 65 0
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proposedmodel also follows the same accepted approach and

assumes a single convection coefficient (weight factor) for

each wall.

More thermocouple pairs can definitely increase the ac-

curacy of thermal load calculations. However, the locations of

the limited number of thermocouple pairs used in this testbed

are arbitrarily selected and, in turn, the self-adjusting algo-

rithm attempts to iteratively adjust the coefficients using the

local temperature readings. Unless rigorous three-

dimensional CFD simulations or extensive experiments are

performed, the detailed heat convection from the surface is

unknown. Thus, the weight factors wj calculated for every

thermocouple pair are assumed as the average coefficient hjAj

at the corresponding wall.

The thermocouples have a tolerance of ±1:0�C and are

connected to a data acquisition system (NI 9214DAQ, National

Instruments Canada, Vaudreuil-Dorion, QC, Canada) that logs

the temperatures at a frequency of 1 Hz. Before starting the

experiments, the thermocouples are tested for calibration at

the room temperature without any heating or cooling. The

thermocouple pairs show the same temperature at every

location with a maximum error of ±0:1�C. Since only tem-

perature differences are used in the model, the relative
Plast

Woode

Woo

Left 
wall Front 

wall 

Rear wall 

(a) 

Fig. 4 e Computer model of the testbed showing its overall dim

view.
calibration of thermocouple pairs proves that the tolerances

of ±1�C are compensated and the errors are cancelled by the

subtraction (Ta � Tw). Therefore, the temperature difference

values can be reliably used for the heat transfer calculations of

the present model.

Regular tape is used to attach the thermocouples as seen in

Fig. 3. The four openings on the front and rear walls of the

chamber are blocked and the chamber is sealed in order to

avoid air infiltration and ventilation. However, a small

amount of infiltration may still exist due to imperfect air

sealing.

Table 1 shows the thermocouple locations with reference

to the coordinate system shown in Fig. 3. As described above,

the thermocouple locations are arbitrarily selected. These lo-

cations are intentionally not symmetric, so that the generality

of the self-adjusting technique for arbitrary configurations is

showcased. Fig. 4 shows a computer model of the chamber

alongside its cross section in a cut view. Overall chamber di-

mensions are also shown in Fig. 4 and the names of different

components are indicated.

An electrical heater with controlled power input is placed

inside the chamber on the bottom plate. The heater is equip-

ped with a fan to circulate air inside the chamber. The fan is

kept at the same location for all tests. The fan power is

measured as 10 W and is eventually converted to heat in the

enclosed chamber due to damping of the air motion. There-

fore, the fan power is also added to the total heating power in

all calculations.

The heater consists of a resistor that provides Joule heating

with controlled input power. The amount of power provided

to the heater is controlled and monitored by a programmable

DC power supply (62000P, Chroma Systems Solutions Inc.,

Orange County, CA, US). The maximum error of the power

measurements is ±0.1 W. Since there is no other heat source

available in the chamber, the known power input to the fan
ic pane 

n bar 

den pane 

Glass pane 

Top wall 

Bottom 
wall 

(b) 

Right 
wall 

ensions and components. (a) Full view. (b) Cross sectional
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and heater can be assumed as the direct heat gain from in-

ternal sources _QI.

An experiment is conducted on the testbed for validating

the proposed model. Various amounts of direct internal heat

gain are imposed on the chamber by varying the DC power

provided to the heater. The heater power is kept constant at

each level until it is ensured that the steady-state condition is

reached. The measurements are recorded for analysis and

calculation.

ASHRAE Handbook of Fundamentals (ASHRAE, 2009) pro-

vides analytical correlations for finding the natural convection

coefficients over vertical and horizontal surfaces. Following

the conventional method of thermal load calculation, these

coefficients can be used for estimating the heat transfer across

the walls. To validate the present model, the analytical cor-

relations are applied on the testbed and the resulting con-

vection coefficients are compared to the calculated weight

factors. Moreover, the total thermal load is calculated using

both sets of coefficients to showcase the effectiveness of the

proposed model. Eq. (4) is used to calculate the heat gain by

the analytical formulas of convection coefficient. Similarly,

Eq. (5) is used to calculate the thermal load by the weight

factors of the present model.

The analytical coefficient of air natural convection over a

vertical wall is calculated from (ASHRAE, 2009):

h ¼ 1:33

�
Ta � Tw

H

�1=4

(9)

where H is the wall height. The coefficient of air natural con-

vection over a horizontal surface is calculated from (ASHRAE,

2009):

h ¼ C

�
gbr2k3cpP

mA
ðTa � TwÞ

�1=4

(10)

where g is the gravitational constant, b is the volumetric co-

efficient of thermal expansion, r is the air density, k is the air

thermal conductivity, cp is the air specific heat, P is the wall

perimeter, and m is the air dynamic viscosity. C ¼ 0.54 for a

cold surface facing down and C¼ 0.27 for a cold surface facing

up. Table 2 shows the estimated convection coefficients ac-

cording to Eqs. (9) and (10), where the average measured

temperatures during the validation experiment are used for Ta

and Tw.

Eq. (1) which is the basis of the present model assumes the

steady-state condition. Therefore, it is required to ensure that
Table 2 e Wall surface areas and convection coefficients
calculated from analytical correlations (ASHRAE, 2009)
shown in Eqs. (9) and (10). Refer to Fig. 4 for component
names and locations.

Wall name A ðm2Þ h ðW m�2 K�1Þ hA ðW K�1Þ
Front 0.5 1.73 0.85

Rear 0.5 1.61 0.78

Left 2.0 1.76 3.42

Right 2.0 1.59 3.09

Top 2.0 1.61 3.23

Bottom 3.0 0.86 2.58
the steady-state condition is reached for every level of the

heater power in the validation experiment. The steady-state

values of the heat transfer rates _Q are reached when all

temperature differences Ta � Tw reach relatively constant

levels. Thus, the exponential growth of the temperature dif-

ferences from the initial values are observed and exponential

correlations of the form:

Ta � Tw ¼ c1 þ c2 expð�c3tÞ (11)

are applied on them. c2 is negative for the increasing expo-

nential trends. The correlation of Eq. (11) is applied to the

measurements from all thermocouple pairs with minimum

coefficients of determination calculated as R2 ¼ 0:95. Fig. 5

shows the exponential growth of the temperature difference

Ta � Tw on the left wall from an initial steady-state. The

exponential correlation fitted over the temperature scatters

has a time constant of 226 s, i.e., it takes less than 4min for the

temperature difference to reach 99% of its maximum steady-

state value. The same procedure is applied to all walls and

themaximum time constant is calculated as 335 s on all walls.

Hence, to ensure that the steady condition is reached, the

heater power is kept constant for 10min at every level and the

final measurements are used in the calculation of thermal

loads.

As shown in Fig. 2, the first part of the algorithm consists of

training the weight factors through an experiment where the

direct heat gain _QI is known. In order to find the adjusted

coefficients, the testbed is allowed to reach the steady state at

an arbitrary level _QI ¼ 0:334 kW of the heater power. Then,

the training algorithm is run until the convergence criteria:

�����
wmþ1

j �wm
j

wm
j

�����< ε (12)

is met with ε ¼ 0.01. At every step, the weight factors are

corrected according to Eq. (8). Fig. 6 shows the progressive

adjustment of the weight factors during the training process.
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Fig. 5 e Exponential growth of the temperature difference

(Ta � Tw) to the steady-state condition on the left wall. The

exponential correlation of Eq. (11) is fitted on the

measurements.
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Fig. 6 e Progressive adjustment (training) of the weight

factors at an arbitrary heater power of _QI ¼ 0:334 kW.

Table 3 e Comparison of adjusted weight factors with
convection coefficients from analytical formulas.

Convection coefficient Analytical Value Adjusted Value

Ventilation and infiltration _QV ¼ 9:11 Wa w0 ¼ 9:11 W

Front Wall h1A1 ¼ 0:85 W K�1 w1 ¼ 29:4 W K�1

Rear Wall h2A2 ¼ 0:78 W K�1 w2 ¼ 21:1 W K�1

Left Wall h3A3 ¼ 3:42 W K�1 w3 ¼ 21:8 W K�1

Right Wall h4A4 ¼ 3:09 W K�1 w4 ¼ 31:4 W K�1

Top Wall h5A5 ¼ 3:23 W K�1 w5 ¼ 7:82 W K�1

Bottom Wall h6A6 ¼ 2:58 W K�1 w6 ¼ 12:0 W K�1

a Estimated equal to.w0.
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All the weight factors are initiated at zero, and the conver-

gence is achieved within 10 steps.

Fig. 7 shows the convergence of the calculated heat gain to

themeasured value during the training process. As the weight

factors are updated, the calculation of the heat gain _QI be-

comes more accurate step by step until convergence to the

measured value is achieved.

Table 3 shows the converged values of the weight factors

shown in Fig. 6. The coefficients hA from Table 2 for each wall

are also repeated in Table 3 for comparison. Since _QV is un-

known, the converged value of its mathematical equivalent

w0 is used for the ventilation term when calculating the total

heat gain from analytical correlations. It is noted that the

coefficients hA (calculated from analytical correlations) and

their mathematical equivalents wj (adjusted by the training

algorithm) can have remarkably different values. In this case,

the available analytical correlations largely underestimate the

rate of heat transfer across the walls. Therefore, automatic

adjustment of coefficients can be beneficial for more accurate

estimation of thermal loads.
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Fig. 7 e Progressive correction of the calculated heat gain

during the training process at a measured heat gain of
_QI ¼ 0:334 kW.
The convection coefficients from analytical correlations

and those adjusted by the training algorithm of the present

model are used to calculate the total heat gain. Fig. 8 shows

the results using both sets of coefficients at various levels of

steady-state heater power. It is noted that analytical co-

efficients can result in huge errors for the calculation of the

total heat gain. In this specific case, there is aminimumof 67%

error in the heat gain calculation using analytical coefficients.

The adjusted weight factors, however, result in a maximum

error of 9%.

The analytical correlations are rigorously validated by

analysis and experiment. But they contain certain assump-

tions that confine their usage. For instance, they assume

natural convection over a flat wall and provide the average

convection coefficient over the wall in its wide open area.

They also assume uniformwall temperature. In practice, none

of these assumptions completely hold. In the present experi-

ment, the walls are surrounded by other enclosure walls, they

are not completely flat, some forced convection may occur

over them, and they have non-uniform temperatures. To find

more accurate convection coefficients, detailed experiments

or numerical simulations are required. The present algorithm

is proposed as a tool for providing accurate thermal load cal-

culations while avoiding extensive simulations and

experiments.

As a data-driven method, a disadvantage of the present

model is that it requires training. Although the training can be
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Fig. 8 e Heat gain calculated by the analytical correlations

and the adjusted weight factors by the present model.
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performed within seconds, directly measuring the heat gain

may be impossible in many cases. However, it is possible to

artificially impose a known heat gain to an existing room

using the same testing approach of this study, i.e., isolating

the room from all possible thermal loads except a known

source of internal heating or cooling. As such, thismethod can

be used for retrofitting existing systems as well as designing

new systems. Whenever it is impossible to directly test the

room for the training process, conventional law-driven

methods can be used to provide an estimation of the actual

heat gain. The estimated heat gain can be fed to the algorithm

as the training target for _QI. The algorithm can then use the

adjusted coefficients for calculating the real-time thermal

loads based on future temperature measurements.
4. Conclusions

A method is proposed for real-time calculation of thermal

loads in HVAC-R applications by automatic estimation of

convection coefficients. The convection coefficients required

by the heat balance equation are adjusted using a mathe-

matical algorithm and temperature measurements. The pro-

posedmethod is validated by experimental results. It is shown

in a case study that the algorithm can calculate the heat gain

with amaximum error of 9%, whereas unadjusted coefficients

calculated from analytical correlations result in a minimum

error of 67%. Since the proposed method is based on funda-

mental heat transfer equations, it can be used in a wide range

of stationary andmobile applications. It provides a simple tool

for designing new systems and retrofitting existing ones while

avoiding extensive simulations and experiments.

Acknowledgments

This work was supported by Automotive Partnership Canada

(APC), Grant No. NSERC APCPJ/429698-11. The authors would

like to thank the kind support of the Cool-It Group, 100-663

Sumas Way, Abbotsford, BC, Canada. The authors wish to

acknowledge David Sticha for his efforts in building the

testbed.
r e f e r e n c e s

ASHRAE, 2009. Handbook of Fundamentals. American Society of
Heating, Refrigerating and Air-Conditioning, Atlanta.

ASHRAE, 2013. Standard 90.1e2013, Energy Standard for Buildings
Except Low Rise Residential Buildings. American Society of
Heating, Refrigerating and Air Conditioning Engineers.

Ben-Nakhi, A.E., Mahmoud, M.A., Aug. 2004. Cooling load
prediction for buildings using general regression neural
networks. Energy Convers. Manag. 45 (13e14), 2127e2141.

Chua, K.J., Chou, S.K., Yang, W.M., Yan, J., Apr. 2013. Achieving
better energy-efficient air conditioning e a review of
technologies and strategies. Appl. Energy 104, 87e104.

Defraeye, T., Blocken, B., Carmeliet, J., 2011. Convective heat
transfer coefficients for exterior building surfaces: existing
correlations and CFD modelling. Energy Convers. Manag. 32
(0), 1e20.

Farrington, R., Rugh, J., 2000. “Impact of Vehicle Air-conditioning
on Fuel Economy, Tailpipe Emissions, and Electric Vehicle
Range,” in Earth Technologies Forum no. September.

Farrington, R., Cuddy, M., Keyser, M., Rugh, J., 1999. Opportunities
to reduce air-conditioning loads through lower cabin soak
temperatures. In: Proceedings of the 16th Electric Vehicle
Symposium.

Fayazbakhsh, M.A., Bahrami, M., 2013. “Comprehensive Modeling
of Vehicle Air Conditioning Loads Using Heat Balance
Method,” in SAE Transactions.

Fayazbakhsh, M.A., Bagheri, F., Bahrami, M., Jan. 2015. An inverse
method for calculation of thermal inertia and heat gain in air
conditioning and refrigeration systems. Appl. Energy 138,
496e504.

Graupe, D., 1997. Principles of Artificial Neural Networks.
Hovgaard, T., Larsen, L., Skovrup, M., Jørgensen, J., 2011. Power

consumption in refrigeration systems-modeling for
optimization. In: Proceedings of the 2011 4th International
International Symposium on Advanced Control of Industrial
Processes, pp. 234e239.

Johnson, V.H., 2002. FuelUsed forVehicleAir Conditioning: a State-
by-State Thermal Comfort-Based Approach. SAE Transactions.

Kashiwagi, N., Tobi, T., 1993. Heating and cooling load prediction
using a neural network system. In: Proceedings of 1993
International Conference on Neural Networks (IJCNN-93-
Nagoya, Japan), vol. 1, pp. 939e942.

Khalifa, A., 2001. Natural convective heat transfer coefficientea
review: I. Isolated vertical and horizontal surfaces. Energy
Convers. Manag. 42.

Khalifa, A., 2001. Natural convective heat transfer coefficientea
review: II. Surfaces in two-and three-dimensional enclosures.
Energy Convers. Manag. 42.

Kurazumi, Y., Rezgals, L., Melikov, A., 2014. Convective heat
transfer coefficients of the human body under forced
convection from ceiling. J. Ergon. 4 (1), 1e6.

Lei, L., Wang, S., (Tim) Zhang, T., Apr. 2014. Inverse determination
of wall boundary convective heat fluxes in indoor
environments based on CFD. Energy Build. 73, 130e136.

Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A., Jan. 2009.
Predicting hourly cooling load in the building: a comparison of
support vector machine and different artificial neural
networks. Energy Convers. Manag. 50 (1), 90e96.

Liang, J., Du, R., 2005. Thermal comfort control based on neural
network for HVAC application,”. In: Proceedings of 2005 IEEE
ConferenceonControlApplications,2005.CCA2005,pp.819e824.

Lippmann, R.P., Mar. 1988. An introduction to computing with
neural nets. ACM SIGARCH Comput. Archit. News 16 (1), 7e25.

Loveday, D.L., Taki, A.H., May 1996. Convective heat transfer
coefficients at a plane surface on a full-scale building facade.
Int. J. Heat Mass Transf. 39 (8), 1729e1742.

Mehrotra, K., Mohan, C., Ranka, S., 1997. Elements of Artificial
Neural Networks. MIT Press.

Palyvos, J.A., Jun. 2008. A survey of wind convection coefficient
correlations for building envelope energy systems' modeling.
Appl. Therm. Eng. 28 (8e9), 801e808.

Pedersen, C.O., Fisher, D.E., Liesen, R.J., 1997. Development of a
heat balance procedure for calculating cooling loads. ASHRAE
Trans. 103, 459e468.

P�erez-Lombard, L., Ortiz, J., Pout, C., Jan. 2008. A review on
buildings energy consumption information. Energy Build. 40
(3), 394e398.

Rosenblatt, F., 1962. Principles of Neurodynamics.
Sartori, E., Sep. 2006. Convection coefficient equations for forced

air flow over flat surfaces. Sol. Energy 80 (9), 1063e1071.
Solmaz, O., Ozgoren, M., Aksoy, M.H., Jun. 2014. Hourly cooling

load prediction of a vehicle in the southern region of Turkey

http://refhub.elsevier.com/S0140-7007(15)00156-5/sref1
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref1
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref2
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref2
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref2
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref2
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref3
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref3
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref3
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref3
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref3
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref4
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref4
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref4
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref4
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref4
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref5
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref5
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref5
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref5
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref5
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref6
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref6
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref6
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref7
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref7
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref7
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref7
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref8
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref8
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref8
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref9
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref9
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref9
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref9
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref9
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref10
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref11
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref12
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref12
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref13
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref13
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref13
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref13
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref13
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref14
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref14
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref14
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref14
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref15
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref15
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref15
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref15
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref16
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref16
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref16
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref16
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref17
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref17
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref17
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref17
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref18
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref18
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref18
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref18
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref18
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref19
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref19
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref19
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref19
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref20
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref20
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref20
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref21
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref21
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref21
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref21
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref22
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref22
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref23
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref23
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref23
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref23
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref23
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref24
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref24
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref24
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref24
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref25
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref25
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref25
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref25
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref25
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref26
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref27
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref27
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref27
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref28
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref28
http://dx.doi.org/10.1016/j.ijrefrig.2015.05.017
http://dx.doi.org/10.1016/j.ijrefrig.2015.05.017


i n t e r n a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 5 7 ( 2 0 1 5 ) 2 2 9e2 3 8238
by artificial neural network. Energy Convers. Manag. 82,
177e187.

Sousa, J.M., Babu�ska, R., Verbruggen, H.B., Oct. 1997. Fuzzy
predictive control applied to an air-conditioning system.
Control Eng. Pract. 5 (10), 1395e1406.

Wang, S., Xu, X., Apr. 2006. Simplified building model for
transient thermal performance estimation using GA-based
parameter identification. Int. J. Therm. Sci. 45 (4), 419e432.

Wang, S., Xu, X., Aug. 2006. Parameter estimation of internal
thermal mass of building dynamic models using genetic
algorithm. Energy Convers. Manag. 47 (13e14), 1927e1941.

Yao, Y., Lian, Z., Liu, S., Hou, Z., Nov. 2004. “Hourly cooling load
prediction by a combined forecasting model based on analytic
hierarchy process. Int. J. Therm. Sci. 43 (11), 1107e1118.

Zhai, Z., Chen, Q., 2003. Impact of determination of convective
heat transfer on the coupled energy and CFD simulation for
buildings. In: Proceedings of Building Simulation Conference,
pp. 1467e1474.
Zhai, Z., Chen, Q., 2003. Solution characters of iterative coupling
between energy simulation and CFD programs. Energy Build.
35, 493e505.

Zhai, Z.J., Chen, Q.Y., Apr. 2005. Performance of coupled
building energy and CFD simulations. Energy Build. 37 (4),
333e344.

Zhai, Z., (Yan) Chen, Q., Aug. 2004. Numerical determination and
treatment of convective heat transfer coefficient in the
coupled building energy and CFD simulation. Build. Environ.
39 (8), 1001e1009.

Zhai, Z., Chen, Q., Klems, J.H., Haves, P., 2001. Strategies for
Coupling Energy Simulation and Computational Fluid
Dynamics Programs.

Zhai, Z., Chen, Q., Haves, P., Klems, J.H., 2002. On approaches to
couple energy simulation and computational fluid dynamics
programs. Build. Environ. 37, 857e864.

http://refhub.elsevier.com/S0140-7007(15)00156-5/sref28
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref28
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref28
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref29
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref29
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref29
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref29
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref29
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref30
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref30
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref30
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref30
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref31
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref31
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref31
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref31
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref31
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref32
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref32
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref32
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref32
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref33
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref33
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref33
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref33
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref33
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref34
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref34
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref34
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref34
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref35
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref35
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref35
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref35
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref36
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref36
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref36
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref36
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref36
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref37
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref37
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref37
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref38
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref38
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref38
http://refhub.elsevier.com/S0140-7007(15)00156-5/sref38
http://dx.doi.org/10.1016/j.ijrefrig.2015.05.017
http://dx.doi.org/10.1016/j.ijrefrig.2015.05.017

	Real-time thermal load calculation by automatic estimation of convection coefficients
	1. Introduction
	2. Model development
	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References


